Enforcement of rough fuzzy clustering based on correlation analysis

نویسندگان

  • Revathy Subramanion
  • Parvathavarthini Balasubramanian
  • Shajunisha Noordeen
چکیده

Clustering is a standard approach in analysis of data and construction of separated similar groups. The most widely used robust soft clustering methods are fuzzy, rough and rough fuzzy clustering. The prominent feature of soft clustering leads to combine the rough and fuzzy sets. The Rough Fuzzy C-Means (RFCM) includes the lower and boundary estimation of rough sets, and fuzzy membership of fuzzy sets into c-means algorithm, the widespread RFCM needs more computation. To avoid this, this paper proposes Fuzzy to Rough Fuzzy Link Element (FRFLE) which is used as an important factor to conceptualize the rough fuzzy clustering from the fuzzy clustering result. Experiments with synthetic, standard and the different benchmark dataset shows the automation process of the FRFLE value, then the comparison between the results of general RFCM and RFCM using FRFLE is observed. Moreover, the performance analysis result shows that proposed RFCM algorithm using FRFLE deals with less computation time than the traditional RFCM algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

A Fuzzy Evaluation Algorithm of E-commerce Customers Based on Attributes Reduction

The evaluation algorithm is based on the attributes of data objects. There is a certain correlation between attributes, and attributes are divided into key attributes and secondary attributes. The evaluation from the data objects in a hierarchical design based on key attributes can reduce the data size and algorithm complexity, and without prejudice on the basis of evaluation results can improv...

متن کامل

Neighborhood Clustering of Web Users With Rough K-Means

Data collection and analysis in web mining faces certain unique challenges. Due to a variety of reasons inherent in web browsing and web logging, the likelihood of bad or incomplete data is higher than conventional applications. The analytical techniques in web mining need to accommodate such data. Fuzzy and rough sets provide the ability to deal with incomplete and approximate information. Fuz...

متن کامل

Fuzzy set and rough set based evaluation algorithm of web customers

A fuzzy algorithm of web customers evaluation based on rough set is presented. Key attributes can be gotten through rough set. The evaluation from the data objects based on key attributes can reduce the data size and algorithm complexity. After Clustering analysis of customers, then the evaluation analysis will process to the clustering data. There are a lot of uncertain data in customer cluste...

متن کامل

Clustering of Web Usage Data Using Fuzzy Tolerance Rough Set Similarity and Table Filling Algorithm

Web Usage Mining is the application of data mining techniques to learn usage patterns from Web server log file in order to understand and better serve the requirements of web based applications. Web Usage Mining includes three most important steps namely Data Preprocessing, Pattern discovery and Analysis of the discovered patterns. One of the most important tasks in Web usage mining is to find ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. Arab J. Inf. Technol.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017